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Neuronal ensemble activity codes workingmemory. In this work, we developed a neuronal ensemble
sparse coding method, which can e®ectively reduce the dimension of the neuronal activity and
express neural coding. Multichannel spike trains were recorded in rat prefrontal cortex during a
workmemory task inY-maze. As discrete signals, spikes were transferred into continuous signals by
estimating entropy. Then the normalized continuous signals were decomposed via non-negative
sparse method. The non-negative components were extracted to reconstruct a low-dimensional
ensemble, while none of the feature components were missed. The results showed that, for well-
trained rats, neuronal ensemble activities in the prefrontal cortex changed dynamically during the
working memory task. And the neuronal ensemble is more explicit via using non-negative sparse
coding. Our results indicate that the neuronal ensemble sparse codingmethod can e®ectively reduce
the dimension of neuronal activity and it is a useful tool to express neural coding.

Keywords: Low-dimensional structures; sparse coding; neuronal ensemble activity; working
memory; rat.

1. Introduction

Working memory refers to a brain system that
provides temporary storage and manipulation of the
information which is necessary for complex cogni-
tive tasks.1 Many studies have demonstrated that
neuronal ensemble is the fundamental structure in
the brain through which we represent concepts,
store and recall information, and form associations
between concepts. Neuronal ensemble activity codes

the working memory.2,3 Physiological studies have
found that the neuronal activity in the prefrontal
cortex (PFC) changes during new task learning,
which suggest that working memory is mediated by
continuous neuronal ensemble activities of PFC
neurons.4�9 Understanding the neural coding in the
working memory is important for grasping the
fundamental computations underlying brain func-
tion and interpreting signals.
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In the study of neural coding, researchers have
faced huge challenges in the aspect of data analysis.
Due to the rapid development of the multi-channel
synchronous recording technique, vast data of
neuronal population activity from various electro-
physiological experiments can be obtained. Since
high-dimensional data are frequently obtained, it is
di±cult to extract useful information from huge
data at a reasonable computational expense. It
brings us to a critical problem — dimension re-
duction. Therefore, we have to convert the high-
dimensional input dataset into low-dimensional
data. Here, we introduce a concept of sparse coding.

The important property of neural coding is that a
relatively small number of neurons out of a large
populationare strongly active at any time.This refers
to \sparse coding".10�12 Sparse coding is a favorable
compromise between dense coding and local coding.
Several studies have applied the sparse coding al-
gorithm to analyze physiological signals and yielded
many promising results.11,13,14 Sparse coding over-
comes the limitation of independent component
coding and principal components analysis, allowing
the mixing matrix to be overcompleted.15 Sparse
coding can reduce the dimension of neuronal popu-
lation activity and make the description of neuronal
ensemble coding more e®ective with low dimension.

In addition, many theories, such as rate coding,
time coding, and nonlinear coding16 have laid a
foundation for the further studies on neuronal ac-
tivities. Entropy is ameasurement of uncertainty and
the amount of information,17,18 which can quantify
information as well as describe the characteristics of
neuronal activity. Moreover, the nonlinear entropy
can avoid the shortcomings of the traditional linear
coding methods and show the di®erences between
two spike trains which have the same ¯ring rates but
di®erent temporal structures.

Therefore, in this work, we developed a neuronal
ensemble sparse coding method, in which continu-
ous process for neuronal ¯ring was performed by the
estimation of the neuronal ¯ring entropy. The
neuronal ensemble sparse coding method can e®ec-
tively reduce the dimension of neuronal activity and
it is a useful tool to express neural coding.

2. Materials and Methods

2.1. Experiments

Fivemale Sprague-Dawley rats weighting 300�350 g
participated in the experiment. After habituatation

and two-day food restriction, the rats received
training sessions in a Y-maze task until the rats'
performances reached a steady correct rate of 80%.
The Y-maze working memory task included a free
choice and a delayed alternation. Then a synchro-
nous 16-channel microelectrode array was implan-
ted in rat PFC. Multichannel spike trains were
recorded while the rats were performing the working
memory task. The behavioral events were marked
via an infrared sensor in the Y-maze.

2.2. Linear mixture model for neuronal

signals

It is assumed that neuronal signals are linear mix-
ture of source components such as brain sources,
artifacts, etc. Then we have the following linear
model:

X ¼ AS; ð1Þ
where X ¼ ½xð1Þ; . . . ; xðnÞ� is a known neuronal ac-
tivity matrix; n is the number of windows; A ¼
½a1; . . . ; ar� is an n� r unknown mixing constant
matrix; and S ¼ ½sð1Þ; . . . ; sðnÞ� is an unknown
source components matrix in which the rows rep-
resent brain sources.We can assume that the number
of components is larger than the number of neurons.

As is well-documented, the ICA approach is often
used to determine the mixing matrix and source
components; however, the ICA algorithms are
based on the assumption that all of the source
components are mutually independent. In fact, it is
not reasonable to assume that all of the brain
sources are mutually independent. Therefore, the
ICA approach is not ideal in determining the mixing
matrix and brain sources.13 In this paper, a sparse
factorization approach is used for the determination
of the mixing matrix and source components.

2.3. Neuronal ensemble sparse coding

2.3.1. Continuous process for neuronal ¯ring

Since the neuronal activity is discrete, the method
to convert neuronal activity into continuous input
data is one of the key points for sparse coding. In
this paper, point potential is quanti¯ed based on
neuronal ¯ring entropy in selected windows.17

Entropy estimation of spike train for one neuron is
described as the follows:

(1) Measure the neuronal ¯ring ISI sequence and
estimate ISI histogram;
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(2) According to the characteristics of the neuronal
¯ring sequence, set an appropriate bin and
separate the ISI histogram using de¯ned bin
length, and then count the number of spikes zi
in each bin iði ¼ 1; 2; . . . ;nÞ;

(3) Compute the ¯ring probability pi of ith bin
based on Eq. (2):

pi ¼ zi=
Xn

i¼1

zi: ð2Þ

(4) From Eq. (3) calculate the entropy X of the
¯ring sequence.

X ¼ �
Xn

i¼1

pi log pi: ð3Þ

In this paper, the base of logarithm is 2 and the unit
of entropy X is bit.

The entropy estimation method can be used to
describe the nonlinearity of the neuronal population
activity. The steps are summarized as follows:

(1) Select a window (window width ¼ 200ms; mov-
ing step ¼ 50ms) and calculate entropy for every
neuron k (k ¼ 1; 2; . . . ;m) in each window;

(2) Normalize neuronal ¯ring entropy values during
the whole session.

(3) The normalized entropy values matrix is used as
the input data of NNSC.

2.3.2. NNSC of neuronal population ¯ring
entropy matrix

The source matrix S and mixing matrix A are
unknown. The system takes the entropy matrix X
as an input. The estimation of sources and mixing
matrix is based on minimization of cost function,
which minimizes the reconstruction error while
preserves the sparseness and linear mixture
assumptions. The cost function is given by:

CðA;SÞ ¼ 1

2
jjX �ASjj2 þ �

X

ij

Sij: ð4Þ

It is assumed that the sources are inactive most of
the time. In the model, this means that the elements
of S have a high probability of being zero. The
tradeo® between the sparsity of the decomposition
and accurate reconstruction is controlled by the
parameter �. The objective is to ¯nd A and S which
minimize the cost function of Eq. (4), with the

following restrictions:

8 ij : Xij � 0; Sij � 0; Aij � 0;

8 i : jjaijj ¼ 1; � � 0;

where ai denotes the ith column vector of A.
In optimization, a combination of multiplicative

step and projected gradient descent is deemed to be
the most e±cient. The algorithm is the same to the
one proposed by Hoyer.19

2.3.3. Low-dimensional reconstruction via
feature sparse components

The sparse components were estimated from the
matrix S and the feature components were extrac-
ted to reconstruct neuronal activity mapping with
low dimension. The components, of which the
coe±cients increase suddenly during the time
according to the ¯ring rate histogram and sparse
coding, are extracted as feature components or
meaningful sources. The neuronal population ¯ring
dynamic spatio-temporal mapping is obtained by an
inverse of sparsifying transform of sparse feature
components.

2.4. Important issues in neuronal
ensemble sparse coding

The number of desired sources r has to be set
manually. So far, there is no ideal way for the re-
liable estimation of the number of sources. Assum-
ing that the number of the sources is greater than
the number of the neurons, if there is one zero
component in source component matrix, the num-
ber of sources is named threshold. With the number
of the source being greater than the threshold, there
would be more zero components.

In the NNSC framework, the proposed non-
negative constraints are important for learning
parts-based representations from non-negative
data. In addition, the constraints make source
estimation more e±cient. Therefore, it is expected
that NNSC may ¯nd local structures of neuronal
¯ring activity.

3. Results

In NNSC, the parameter � was set to 0.2, which
ensures the balance of the sparseness of the
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decomposition with the accuracy of the data
reconstruction.19

(1) The neuronal population spike trains in rat
PFC during working memory task is shown in
Fig. 1(a). The spatio-temporal mapping of
neuronal ¯ring entropy is shown in Fig. 1(b).
The neuronal ¯ring entropy matrix is obtained
from sliding window of 200ms with 50ms
overlapping.

(2) The neuronal population ¯ring entropymatrix is
decomposed into a mixing matrix and 34 sparse
components by NNSC. In Fig. 1(b), we can see
that each row contains many zero entries in the
¯ring entropy matrix. Since most neurons do not
¯re continuously in every 200-ms window during
the entire training set, the neuronal data are
sparse. This implies that source components
should also be much sparser than the inputs.

Over the entire 7 s, the nonzero components
(active components) are, on an average, exactly
zero in most (90%) of the time. Histograms of
some individual components are shown in Fig. 2.
Most of the histograms are somewhat bimodal,
suggesting anunderlyingbinary process, namely,
the presence or absence of a neuron.

(3) The feature sparse components are selected
according to the histogram of neuronal ¯ring
rate in Fig. 3(a) and neuronal ensemble sparse
coding in Fig. 3(b). We can see that the entropy
values before time stamp are obviously higher
than those after the time stamp. In addition,
several neurons formed a neuronal ensemble
before time stamp. Here, six components, whose
coe±cients increased dramatically before time
stamp, were selected as feature components
(Fig. 4).

(a) (b)

Fig. 2. A total of 34 sparse components obtained from the neuronal database, showing both high sparsity and bimodality. (a)
Histogram of the activity of the source component matrix. (b) Histograms of the activities of three components.

(a) (b)

Fig. 1. Neuronal population activity: (a) Spatio-temporal spike trains. (b) Mapping of the neuronal population ¯ring entropy. The
tripping time by infrared in Y-maze is indicated by an arrow.
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(4) The feature components were used to recons-
truct the raw data by an inverse of the sparsify-
ing transform. The histogram of reconstructed
neuronal population ¯ring entropy and the
neuronal ensemble sparse coding are shown in
Figs. 5(a) and 5(b), respectively. The entropy
values of a fewneurons change greatly around the

time stamp, and these neurons forms a neuronal
ensemble before the behavior response.

(5) From the results of the neuronal ensemble
sparse coding, we can see that neuronal popu-
lation ¯ring pattern had a great change during
the working memory. Besides, both the methods
express the neuronal ensemble coding of work-
ing memory. Sparse coding made the neuronal
ensemble more explicit by picking out feature
components and reducing the redundancy.
For the convenience of comparison, we enlarge
the mapping in red rectangles in Figs. 3(b) and
5(b), shown in Fig. 6. Using entropy coding, the
neuronal ensemble composed of the 1st, 3rd,
5th, 6th, 7th, 8th, 9th, 10th and 12th neurons.
The ensemble lasts 3.5 s from 0.5 s to 4 s. In the
result of sparse coding, the 5th, 6th and 7th
neurons form a neuronal ensemble, which lasts
1 s from 1.5 s to 2.5 s.

In order to show the e±ciency of neuronal ensemble
sparse coding more clearly, 10 trials with chronic

(a) (b)

Fig. 3. Neuronal ensemble entropy coding during the working memory task. (a) Histogram of neuronal population ¯ring. (b)
Neuronal ensemble entropy coding.

Fig. 4. Feature sparse components of the neuronal activity in
rat PFC during the working memory task.

(a) (b)

Fig. 5. Neuronal ensemble sparse coding during the working memory task. (a) Histogram of sparse reconstructed neuronal
population ¯ring entropy. (b) Neuronal ensemble sparse coding.

Low-Dimensional Structures: Sparse Coding for Neuronal Activity

1350002-5

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
3.

06
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



recording were analyzed. The results of neuronal
ensemble sparse coding and entropy coding in rat
PFC during the working memory task are shown in
Figs. 7 and 8, respectively. As can be seen in Fig. 7,
three neurons in the population changed their ¯ring
patterns greatly during the working memory task
and formed a relatively stable neuronal ensemble.
The neuronal ensemble was composed of the 9th,
10th and 11th neurons. In time terms, the neuronal
ensemble de¯ned via sparse coding lasted shorter
(0:8478� 0:2896 s) than that of entropy coding
(2:9780� 1:0031 s), and t-tests showed remarkably
di®erence (p < 0:01).

If one neuron in the neuronal population shows
di®erent activity in six or more trials, the neuron is
considered to be a member of the neuronal ensemble
which encodes the working memory. The numbers
of ensemble neurons in the 10 trials are shown in
Table 1. It is clear that the neuronal ensemble is
composed of the 9th, 10th and 11th neurons.
However, the number of the neural ensemble is not
stable in 10 trials via neuronal ensemble entropy
coding.

For well-trained rats, neuronal ensemble activi-
ties in the PFC changes dynamically during the
working memory task. The neuronal ensemble is

Fig. 7. Neuronal ensemble sparse coding during working memory task. The tripping time by infrared in Y-maze is indicated by an
arrow. The rasters indicate the timestamps of spikes. Histogram of sparse reconstructed neuronal population ¯ring entropy.
Dynamic mappings present results of neuronal ensemble sparse coding. Ten trials have been shown and each column represents one
trial.

(a) (b)

Fig. 6. Neuronal ensemble entropy coding and sparse coding during the working memory task. (a) Entropy coding. (b) Sparse
coding.

Y. Xu, W. Bai & X. Tian
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more explicit both in time and space via using non-
negative sparse coding.

4. Discussions

Sparse coding is a novel and relatively new tool for
analyzing the non-negative data structure. The

results presented in this paper indicate that the
neuronal ensemble sparse coding can reconstruct
neuronal activity mapping with low dimension and
make the description of neural coding more e®ective
with low dimension, both in temporal and spatial
terms.

Sparse coding is a useful tool for analyzing
neuronal data to reveal the neuronal activity pat-
terns. However, there is still an issue when using
NNSC for neuronal data analysis. The methodology
detects patterns of activity, but the feature com-
ponents have to be selected by hand. The results
obtained in our investigation suggest that some
issues have to be studied further, including the
automatic selection of the feature components and
application of sparse coding in di®erent areas of
neuronal activity analysis.

4.1. Parameters

Sparse coding allows the mixing matrix to be
overcompleted, meaning that a greater number of
the sources than the dimension are in the input
signal. But there is no straightforward way for the

Table 1. Ensemble neurons identi¯ed by
sparse coding and entropy coding.

Trails Sparse coding Entropy coding

1 9, 10, 11 8, 9, 10, 12, 34
2 9, 10, 11 9, 10, 11, 12
3 9, 10, 11 9, 10, 11
4 9, 10, 11, 12 9, 10, 11, 12
5 8, 9, 11 8, 9, 11, 18, 29, 31
6 8, 9, 10 8, 9, 11
7 10, 11 9, 10, 11
8 9, 10 9, 10
9 9, 10 9, 10
10 9, 10, 11 9, 10, 11

Fig. 8. Neural ensemble entropy coding during the working memory task. The tripping time by infrared in Y-maze is indicated by
an arrow. The rasters indicate the time stamps of spikes. The histograms show ¯ring entropy for neurons recorded simultaneously
during the working memory task. Dynamic mappings present results of neural ensemble entropy coding. Ten trials have been shown
and each column represents one trial.

Low-Dimensional Structures: Sparse Coding for Neuronal Activity
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estimation of the number of sources now. So the
number of the sources has to be set by hand. Here,
the threshold was obtained for a neuronal dataset
and then the maximum of the thresholds for 10
neuronal datasets for one rat was obtained. The
number was set as the dimension of the sources.
Much work needs to be done in order to obtain the
number. This will be further studied in the future
work.

The choice of the parameter � needs to be
investigated. We found that, for a 20-element dic-
tionary, the performance decreases if � > 0:3. In
this paper, � was set to 0.2. Here, we took one trial
as an example. Keeping the same number of sources,
the results of neuronal ensemble sparse coding were
shown when � was 0.2 and 0.5, respectively. In
Fig. 9(c), larger � values generated bad recon-
struction of all sparse components. The result in
Fig. 9(c) lost much information, which may be
crucial for working memory.

4.2. Initializing the mixing matrix

The mixing matrix needs to be initialized before
sparse coding. Here, the non-negative mixing
matrix is selected randomly and each column is
normalized. In fact, initializing the mixing matrix
in°uences the results of sparse coding to a certain
extent. Therefore, it is essential to choose proper
basis that is able to express the neuronal ¯ring

characteristic. But now we have not found the
proper basis as columns of the mixing matrix.
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